These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PTH/cAMP/PKA signaling facilitates canonical Wnt signaling via inactivation of glycogen synthase kinase-3beta in osteoblastic Saos-2 cells.
    Author: Suzuki A, Ozono K, Kubota T, Kondou H, Tachikawa K, Michigami T.
    Journal: J Cell Biochem; 2008 May 01; 104(1):304-17. PubMed ID: 17990294.
    Abstract:
    Although the intermittent administration of PTH is known to stimulate the bone formation, the underlying mechanisms are not fully understood. Here we investigated the crosstalk between PTH/cAMP signaling and canonical Wnt signaling using the human osteoblastic cell line Saos-2. Treatment with PTH or forskolin, an activator of adenylate cyclase, facilitated T-cell factor (TCF)-dependent transactivation in a dose-dependent manner, which was abolished by pre-treatment with a PKA inhibitor, H89. Wnt3a and forskolin synergistically increased the TCF-dependent transactivation. Interestingly, intermittent treatment with PTH enhanced the TCF-dependent transactivation more profoundly than continuous treatment. In addition to the effects on TCF-dependent reporter activity, treatment with PTH or forskolin resulted in the increased expression of endogenous targets of Wnts, Wnt-induced secreted protein 2 (WISP2) and naked cuticle 2 (NKD2). We then investigated the convergence point of PTH/cAMP signaling and the canonical Wnt pathway. Western blotting demonstrated that GSK-3beta was rapidly phosphorylated at Ser(9) on treatment with PTH or forskolin, leading to its inactivation. Moreover, overexpression of a constitutively active mutant of GSK-3beta abolished the TCF-dependent transactivation induced by forskolin. On the other hand, overexpression of the Wnt antagonist Dickkopf-1 (DKK1) failed to cancel the effects of forskolin on the canonical Wnt pathway. Interestingly, treatment with Wnt3a markedly reduced the forskolin-induced expression of receptor activator of NF-kappaB ligand (RANKL), a target gene of PTH/cAMP/PKA. These results suggest that cAMP/PKA signaling activates the canonical Wnt pathway through the inactivation of GSK-3beta, whereas Wnt signaling might inhibit bone resorption through a negative impact on RANKL expression in osteoblasts.
    [Abstract] [Full Text] [Related] [New Search]