These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Hydroxyurea attenuates activated neutrophil-mediated sickle erythrocyte membrane phosphatidylserine exposure and adhesion to pulmonary vascular endothelium.
    Author: Haynes J, Obiako B, Hester RB, Baliga BS, Stevens T.
    Journal: Am J Physiol Heart Circ Physiol; 2008 Jan; 294(1):H379-85. PubMed ID: 17993595.
    Abstract:
    Activated neutrophils increase erythrocyte phosphatidylserine (PS) exposure. PS-exposed sickle red blood cells (SSRBCs) are more adhesive to vascular endothelium than non-PS-exposed cells. An increase in SSRBC fetal hemoglobin (HbF) concentration has been associated with improved rheology and decreased numbers of vasoocclusive episodes. This study examined the effects of HbF, PS-exposed SSRBCs, and chronic hydroxyurea (HU) treatment on activated neutrophil-mediated SSRBC retention/adherence in isolated-perfused rat lungs. Lungs were perfused with erythrocyte suspensions from 1) individuals homozygous for hemoglobin S with 0-7% HbF (SS), 2) with > or =8% HbF (SS + F), and 3) individuals homozygous for hemoglobin S treated with HU therapy for > or =1 yr (SS + HU). Retention of SSRBCs from the SS + HU group was significantly less than that seen in both the SS and SS + F groups. No difference was observed between the SS and SS + F groups. The percentage of HbF and F-cells did not differ between the SS + F and SS + HU groups. At baseline, the proportion of PS-exposed SSRBCs was not different between the SS and SS + HU groups. However, SSRBC treatment with activated neutrophil supernatant caused a twofold increase in PS-exposed SSRBCs in the SS control and no change in the SS + HU group. We conclude that 1) HU attenuates SSRBC retention/adherence in the pulmonary circulation seen in response neutrophil activation, 2) HU stabilizes SSRBC membrane PS, and 3) HU attenuation SSRBC retention/adherence in the pulmonary circulation occurs through a mechanism(s) independent of HbF.
    [Abstract] [Full Text] [Related] [New Search]