These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Binding of the recombinant proteinase inhibitor eglin c from leech Hirudo medicinalis to serine (pro)enzymes: a comparative thermodynamic study. Author: Ascenzi P, Aducci P, Amiconi G, Ballio A, Guaragna A, Menegatti E, Schnebli HP, Bolognesi M. Journal: J Mol Recognit; 1991; 4(4):113-9. PubMed ID: 1799460. Abstract: The binding of the recombinant proteinase inhibitor eglin c from the leech Hirudo medicinalis to serine (pro)enzymes belonging to the chymotrypsin and subtilisin families has been investigated from the thermodynamic viewpoint, between pH 4.5 and 9.5 and from 10 degrees C to 40 degrees C. The affinity of eglin c for the serine (pro)enzymes considered shows the following trend: Leu-proteinase [the leucine specific serine proteinase from spinach (Spinacia oleracea L.) leaves] greater than human leucocyte elastase congruent to human cathepsin G congruent to subtilisin Carlsberg congruent to bovine alpha-chymotrypsin greater than bovine alpha-chymotrypsinogen A congruent to porcine pancreatic elastase congruent to bovine beta-trypsin. The serine (pro)enzyme-inhibitor complex formation is an entropy-driven process. On increasing the pH from 4.5 to 9.5, the affinity of eglin c for the serine (pro)enzymes considered increases thus reflecting the acid pK shift of the invariant hystidyl catalytic residue from approximately to 6.9 in the free serine proteinases and bovine alpha-chymotrypsinogen A to congruent to 5.1 in the serine (pro)enzyme-inhibitor complexes. Considering the known molecular models, the observed binding behaviour of eglin c was related to the inferred stereochemistry of the serine (pro)enzyme-inhibitor contact regions.[Abstract] [Full Text] [Related] [New Search]