These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Unusual long-range spin-spin coupling in fluorinated polyenes: a mechanistic analysis.
    Author: Gräfenstein J, Cremer D.
    Journal: J Chem Phys; 2007 Nov 07; 127(17):174704. PubMed ID: 17994839.
    Abstract:
    Nuclear magnetic resonance (NMR) is a prospective means to realize quantum computers. The performance of a NMR quantum computer depends sensitively on the properties of the NMR-active molecule used, where one requirement is a large indirect spin-spin coupling over large distances. F-F spin-spin coupling constants (SSCCs) for fluorinated polyenes F-(CH==CH)n-F (n=1cdots, three dots, centered5) are >9 Hz across distances of more than 10 A. Analysis of the F,F spin-spin coupling mechanism with our recently developed decomposition of J into Orbital Contributions with the help of Orbital Currents and Partial Spin Polarization (J-OCOC-PSP=J-OC-PSP) method reveals that coupling is dominated by the spin-dipole (SD) term due to an interplay between the pi lone-pair orbitals at the F atoms and the pi(C2n) electron system. From our investigations we conclude that SD-dominated SSCCs should occur commonly in molecules with a contiguous pi-electron system between the two coupling nuclei and that a large SD coupling generally is the most prospective way to provide large long-range spin-spin coupling. Our results give guidelines for the design of suitable active molecules for NMR quantum computers.
    [Abstract] [Full Text] [Related] [New Search]