These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of extraction conditions on improving the yield and quality of an anthocyanin-rich purple corn (Zea mays L.) color extract.
    Author: Jing P, Giusti MM.
    Journal: J Food Sci; 2007 Sep; 72(7):C363-8. PubMed ID: 17995633.
    Abstract:
    Purple corn (Zea mays L.) is a rich and economic source of anthocyanin colorants and functional ingredients. However, high levels of anthocyanin-rich waste are generated during processing, reducing the yields and increasing the costs of the final product. This waste has been associated with anthocyanin complexation with tannins and proteins. Our objective was to evaluate anthocyanin extraction methods to reduce purple corn waste. Different solvents (water, 0.01%-HCl-acidified water, and 0.01%-HCl-acidified ethanol), temperatures (room temperature, 50, 75, and 100 degrees C), and times of exposure to the solvents were investigated. Acetone (70% acetone in water) extraction was used as control. Anthocyanins, total phenolics, tannins, and proteins in extracts were measured by the pH differential, Folin-Ciocalteu, protein precipitation, and BCA assay methods. Qualitative analyses were done by HPLC coupled to a PDA detector and SDS-PAGE analysis. Water at 50 degrees C achieved the highest yield of anthocyanins (0.94 +/- 0.03 g per 100 g dry corncob) with relatively low tannins and proteins, comparable to the anthocyanin yield obtained by 70% acetone (0.98 +/- 0.08 g per 100 g dry corncob). Extending the extraction time from 20 to 60 min and using consecutive reextraction procedures reduced anthocyanin purity, increasing the yields of other phenolics. A neutral protease was applied to the extracts and effectively decomposed the major protein that was believed to contribute to the development of anthocyanin complexation and waste generation. Extraction time, consecutive reextraction procedures, and enzyme hydrolysis should be considered for high yield of anthocyanins and waste reduction.
    [Abstract] [Full Text] [Related] [New Search]