These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modeling the lag phase and growth rate of Listeria monocytogenes in ground ham containing sodium lactate and sodium diacetate at various storage temperatures.
    Author: Hwang CA, Tamplin ML.
    Journal: J Food Sci; 2007 Sep; 72(7):M246-53. PubMed ID: 17995648.
    Abstract:
    Refrigerated ready-to-eat (RTE) meats contaminated with Listeria monocytogenes were implicated in several listeriosis outbreaks. Lactate and diacetate have been shown to control L. monocytogenes in RTE meats. The objective of this study was to examine and model the effect of lactate (1.0% to 4.2%) and diacetate (0.05% to 0.2%) in ground ham on the lag phase duration (LPD, h) and growth rate (GR, log CFU/h) of L. monocytogenes at a range of temperatures (0 to 45 degrees C). A 6-strain mixture of L. monocytogenes was inoculated into ground ham containing lactate and diacetate, and stored at various temperatures. The LPD and GR of L. monocytogenes in ham as affected by lactate, diacetate, and storage temperature were analyzed and accurately represented with mathematical equations. Resulting LPD and GR equations for storage temperatures within the range of 0 to 36 degrees C significantly represented the experimental data with a regression coefficient of 0.97 and 0.96, respectively. Significant factors (P < 0.05) that affected the LPD were temperature, lactate, diacetate, and the interactions of all three, whereas only temperature and the interactions between temperature and lactate and diacetate had a significant effect on GR. At suboptimal growth temperatures (< or = 12 degrees C) the increase of lactate and diacetate concentrations, individually or in combination, extended the LPD. The effect of higher concentrations of both additives on reducing the GR was observed only at temperatures that were more suitable for growth of L. monocytogenes, that is, 15 to 35 degrees C. These data may be used to assist in determining concentrations of lactate and diacetate in cooked ham products to control the growth of L. monocytogenes over a wide range of temperatures during manufacturing, distribution, and storage.
    [Abstract] [Full Text] [Related] [New Search]