These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of Leuconostoc mesenteroides starter culture on fermentation of cabbage with reduced salt concentrations. Author: Johanningsmeier S, McFeeters RF, Fleming HP, Thompson RL. Journal: J Food Sci; 2007 Jun; 72(5):M166-72. PubMed ID: 17995739. Abstract: Sauerkraut fermentations rely upon selection of naturally occurring lactic acid bacteria by addition of 2.0% to 2.25% granulated sodium chloride (NaCl) to shredded cabbage. Excess brine generated is a waste product with high levels of organic material (BOD) and nonbiodegradable NaCl. The objective was to determine whether addition of Leuconostoc mesenteroides starter culture to reduced-salt cabbage fermentations would yield sauerkraut with reproducible and acceptable chemical composition and sensory qualities. Shredded cabbage was salted with 0.5%, 1.0%, or 2.0% NaCl (wt/wt) at 2 starter culture levels, none or L. mesenteroides strain LA 81, ATCC 8293 (10(6) CFU/g). Fermentation products were quantified by high-performance liquid chromatography, and pH was measured during the initial stages of fermentation and after 10 mo storage at 18 degrees C. A trained descriptive sensory panel used category scales to rate the flavor and texture of selected sauerkrauts. A modified Kramer shear test was used to measure firmness. Cabbage fermented with L. mesenteroides consistently resulted in sauerkraut with firm texture and reduced off-flavors across all salt levels (P < 0.05). Conversely, sauerkraut quality was highly variable, with softening and off-flavors occurring as salt concentrations were decreased in natural fermentations (P < 0.05). Fermentations were rapid, with a more uniform decline in pH when starter culture was added. L. mesenteroides addition to cabbage fermentations ensured that texture and flavor quality were retained, while allowing 50% NaCl reduction. Application of this technology to commercial sauerkraut production could improve the uniformity of fermentations and substantially reduce generation of nonbiodegradable chloride waste.[Abstract] [Full Text] [Related] [New Search]