These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Involvement of mitochondria in endoplasmic reticulum stress-induced apoptotic cell death pathway triggered by the prion peptide PrP(106-126). Author: Ferreiro E, Costa R, Marques S, Cardoso SM, Oliveira CR, Pereira CM. Journal: J Neurochem; 2008 Feb; 104(3):766-76. PubMed ID: 17995926. Abstract: Prion disorders are progressive neurodegenerative diseases characterized by extensive neuronal loss and by the accumulation of the pathogenic form of prion protein, designated PrP(Sc). Recently, we have shown that PrP(106-126) induces endoplasmic reticulum (ER) stress, leading to mitochondrial cytochrome c release, caspase 3 activation and apoptotic death. In order to further clarify the role of mitochondria in ER stress-mediated apoptotic pathway triggered by the PrP peptide, we investigated the effects of PrP(106-126) on the Ntera2 human teratocarcinoma cell line that had been depleted of their mitochondrial DNA, termed NT2 rho0 cells, characterized by the absence of functional mitochondria, as well as on the parental NT2 rho+ cells. In this study, we show that PrP(106-126) induces ER stress in both cell lines, given that ER Ca2+ content is low, glucose-regulated protein 78 levels are increased and caspase 4 is activated. Furthermore, in parental NT2 rho+ cells, PrP(106-126)-activated caspase 9 and 3, induced poly (ADP-ribose) polymerase cleavage and increased the number of apoptotic cells. Dantrolene was shown to protect NT2 rho+ from PrP(106-126)-induced cell death, demonstrating the involvement of Ca2+ release through ER ryanodine receptors. However, in PrP(106-126)-treated NT2 rho0 cells, apoptosis was not able to proceed. These results demonstrate that functional mitochondria are required for cell death as a result of ER stress triggered by the PrP peptide, and further elucidate the molecular mechanisms involved in the neuronal loss that occurs in prion disorders.[Abstract] [Full Text] [Related] [New Search]