These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Complete mitochondrial genomes of three neobatrachian anurans: a case study of divergence time estimation using different data and calibration settings.
    Author: Igawa T, Kurabayashi A, Usuki C, Fujii T, Sumida M.
    Journal: Gene; 2008 Jan 15; 407(1-2):116-29. PubMed ID: 17997052.
    Abstract:
    We sequenced the whole mitochondrial (mt) genomes of three neobatrachian species: Japanese tree frog Hyla japonica, Japanese common toad Bufo japonicus, and narrow-mouthed toad Microhyla okinavensis. The gene arrangements of these genomes diverged from that of basal anurans (suborder Archaeobatrachia), but are the same as that of the members of derived frogs (i.e., superfamily Hyloidae and Ranoidae in suborder Neobatrachia), suggesting the one-time occurrence of a gene rearrangement event in an ancestral lineage of derived anurans. Furthermore, several distinct repeat motifs including putative termination-associated sequences (TASs) and conserved sequence blocks (CSBs) were observed in the control regions (CRs) of B. japonicus and H. japonica, while no repeat motifs were found in that of M. okinavensis. Phylogenetic analyses using both nucleotide and amino acid data of mt genes support monophyly of neobatrachians. The estimated divergence time based on amino acid data with multiple reference points suggests that the three living amphibian orders may have originated in the Carboniferous period, and that the divergences of anurans had occurred between the Permian and Tertiary periods. We also checked the influence of the data types and the settings of reference times on divergence time estimation. The resultant divergence times estimated from several datasets and reference time settings suggest that the substitution saturation of nucleotide data may lead to overestimated (i.e., older) branching times, especially for early divergent taxa. We also found a highly accelerated substitution rate in neobatrachian mt genes, and fast substitution possibly resulted in overestimation. To correct this erroneous estimation, it is efficient to apply several reference points among neobatrachians.
    [Abstract] [Full Text] [Related] [New Search]