These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Use of gene-manipulated mice in the study of erythropoietin gene expression.
    Author: Suzuki N, Obara N, Yamamoto M.
    Journal: Methods Enzymol; 2007; 435():157-77. PubMed ID: 17998054.
    Abstract:
    Transcriptional regulation of animal genes has been classified into two major categories: tissue-specific and stress-inducible. Erythropoietin (EPO), an erythroid growth factor, plays a central role in the regulation of red blood cell production. In response to hypoxic and/or anemic stresses, Epo gene expression is markedly induced in kidney and liver; thus, the Epo gene has been used as a model for elucidating stress-inducible gene expression in animals. A key transcriptional regulator of the hypoxia response, hypoxia-inducible transcription factor (HIF), has been identified and cloned through studies on the Epo gene. Recently developed gene-modified mouse lines have proven to be a powerful means of exploring the regulatory mechanisms as well as the physiological significance of the tissue-specific and hypoxia-inducible expression of the Epo gene. In this chapter, several gene-modified mouse lines related to EPO and the EPO receptor are introduced, with emphasis placed on the examination of in vivo EPO activity, EPO function in nonhematopoietic tissues, EPO-producing cells in the kidney, and cis-acting regulatory elements for Epo gene expression. These in vivo studies of the Epo gene have allowed for a deeper understanding of transcriptional regulation operated in a tissue-specific and stress-inducible manner.
    [Abstract] [Full Text] [Related] [New Search]