These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of 1'-hydroxymidazolam glucuronidation in human liver microsomes.
    Author: Zhu B, Bush D, Doss GA, Vincent S, Franklin RB, Xu S.
    Journal: Drug Metab Dispos; 2008 Feb; 36(2):331-8. PubMed ID: 17998299.
    Abstract:
    Midazolam is a potent benzodiazepine derivative with sedative, hypnotic, anticonvulsant, muscle-relaxant, and anxiolytic activities. It undergoes oxidative metabolism catalyzed almost exclusively by the CYP3A subfamily to a major metabolite, 1'-hydroxymidazolam, which is equipotent to midazolam. 1'-Hydroxymidazolam is subject to glucuronidation followed by renal excretion. To date, the glucuronidation of 1'-hydroxymidazolam has not been evaluated in detail. In the current study, we identified an unreported quaternary N-glucuronide, as well as the known O-glucuronide, from incubations of 1'-hydroxymidazolam in human liver microsomes enriched with uridine 5'-diphosphoglucuronic acid (UDPGA). The structure of the N-glucuronide was confirmed by nuclear magnetic resonance analysis, which showed that glucuronidation had occurred at N-2 (the imidazole nitrogen that is not a part of the benzodiazepine ring). In a separate study, in which midazolam was used as the substrate, an analogous N-glucuronide also was detected from incubations with human liver microsomes in the presence of UDPGA. Investigation of the kinetics of 1'-hydroxymidazolam glucuronidation in human liver microsomes indicated autoactivation kinetics (Hill coefficient, n = 1.2-1.5). The apparent S(50) values for the formation of O- and N-glucuronides were 43 and 18 microM, respectively, and the corresponding apparent V(max) values were 363 and 21 pmol/mg of microsomal protein/min. Incubations with recombinant human uridine diphosphate glucuronosyltransferases (UGTs) indicated that the O-glucuronidation was catalyzed by UGT2B4 and UGT2B7, whereas the N-glucuronidation was catalyzed by UGT1A4. Consistent with these observations, hecogenin, a selective inhibitor of UGT1A4, selectively inhibited the N-glucuronidation, whereas diclofenac, a potent inhibitor of UGT2B7, had a greater inhibitory effect on the O-glucuronidation than on the N-glucuronidation. In summary, our study provides the first demonstration of N-glucuronidation of 1'-hydroxymidazolam in human liver microsomes.
    [Abstract] [Full Text] [Related] [New Search]