These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Locally rotation, contrast, and scale invariant descriptors for texture analysis.
    Author: Mellor M, Hong BW, Brady M.
    Journal: IEEE Trans Pattern Anal Mach Intell; 2008 Jan; 30(1):52-61. PubMed ID: 18000324.
    Abstract:
    Textures within real images vary in brightness, contrast, scale and skew as imaging conditions change. To enable recognition of textures in real images, it is necessary to employ a similarity measure which is invariant to these properties. Furthermore, since textures often appear on undulating surfaces, such invariances must necessarily be local rather than global. Despite these requirements, it is only relatively recently that texture recognition algorithms with local scale and affine invariance properties have begun to be reported. Typically, they comprise detecting feature points followed by geometric normalization prior to description. We describe a method based on invariant combinations of linear filters. Unlike previous methods, we introduce a novel family of filters, which provide scale invariance, resulting in a texture description invariant to local changes in orientation, contrast and scale and robust to local skew. Significantly, the family of filters enable local scale invariants to be defined without using a scale selection principle or a large number of filters. A texture discrimination method based on the A2 similarity measure applied to histograms derived from our filter responses outperforms existing methods for retrieval and classification results for both the Brodatz textures and the UIUC database, which has been designed to require local invariance.
    [Abstract] [Full Text] [Related] [New Search]