These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Disruption of dopamine homeostasis underlies selective neurodegeneration mediated by alpha-synuclein. Author: Park SS, Schulz EM, Lee D. Journal: Eur J Neurosci; 2007 Dec; 26(11):3104-12. PubMed ID: 18005066. Abstract: A key challenge in Parkinson's disease research is to understand mechanisms underlying selective degeneration of dopaminergic neurons mediated by genetic factors such as alpha-synuclein (alpha-Syn). The present study examined whether dopamine (DA)-dependent oxidative stress underlies alpha-Syn-mediated neurodegeneration using Drosophila primary neuronal cultures. Green fluorescent protein (GFP) was used to identify live dopaminergic neurons in primary cultures prepared on a marked photoetched coverslip, which allowed us to repeatedly access preidentified dopaminergic neurons at different time points in a non-invasive manner. This live tracking of GFP-marked dopaminergic neurons revealed age-dependent neurodegeneration mediated by a mutant human alpha-Syn (A30P). Degeneration was rescued when alpha-Syn neuronal cultures were incubated with 1 mm glutathione from Day 3 after culturing. Furthermore, depletion of cytoplasmic DA by 100 microm alpha-methyl-p-tyrosine completely rescued the early stage of alpha-Syn-mediated dopaminergic cell loss, demonstrating that DA plays a major role in oxidative stress-dependent neurodegeneration mediated by alpha-Syn. In contrast, overexpression of a Drosophila tyrosine hydroxylase gene (dTH1) alone caused DA neurodegeneration by enhanced DA synthesis in the cytoplasm. Age-dependent dopaminergic cell loss was comparable in alpha-Syn vs dTH1-overexpressed neuronal cultures, indicating that increased DA levels in the cytoplasm is a critical change downstream of mutant alpha-Syn function. Finally, overexpression of a Drosophila vesicular monoamine transporter rescued alpha-Syn-mediated neurodegeneration through enhanced sequestration of cytoplasmic DA into synaptic vesicles, further indicating that a main cause of selective neurodegeneration is alpha-Syn-induced disruption of DA homeostasis. All of these results demonstrate that elevated cytoplasmic DA is a main factor underlying the early stage of alpha-Syn-mediated neurodegeneration.[Abstract] [Full Text] [Related] [New Search]