These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Amyloid beta-peptide 31-35-induced neuronal apoptosis is mediated by caspase-dependent pathways via cAMP-dependent protein kinase A activation.
    Author: Zhao L, Qian ZM, Zhang C, Wing HY, Du F, Ya K.
    Journal: Aging Cell; 2008 Jan; 7(1):47-57. PubMed ID: 18005252.
    Abstract:
    This study aims to investigate the roles of the protein kinase A (PKA)- and caspase-dependent pathways in amyloid beta-peptide 31-35 (Abeta[31-35])-induced apoptosis, and the mechanisms of neuroprotection by group III metabotropic glutamate receptor (mGluR) activation against apoptosis induced by Abeta[31-35] in cortical neurons. We demonstrated that Abeta[31-35] induces neuronal apoptosis as well as a significant increase in caspase-3, -8 and -9. Activation of group III mGluRs by l-serine-O-phosphate and (R,S)-4-phosphonophenylglycine (two group III mGluR agonists), which attenuate the effects of Abeta[31-35], provides neuroprotection to the cortical neurons subjected to Abeta[31-35]. We also showed that Rp-cAMP, an inhibitor of cAMP-dependent PKA, has the ability to protect neurons from Abeta[31-35]-induced apoptosis and to reverse almost completely the effects of Abeta[31-35] on the activities of caspase-3. Further, we found that Sp-cAMP, an activator of cAMP-dependent PKA, can significantly abolish the l-serine-O-phosphate- and (R,S)-4-phosphonophenylglycine-induced neuroprotection against apoptosis, and decrease caspase-3, -8 and -9 in the Abeta[31-35]-treated neurons. Our findings suggest that neuronal apoptosis induced by Abeta[31-35] is mediated by the PKA-dependent pathway as well as the caspase-dependent intrinsic and extrinsic apoptotic pathways. Activation of group III mGluRs protects neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Inhibition of the PKA-dependent pathway might also protect neurons from Abeta[31-35]-induced apoptosis by blocking the caspase-dependent pathways. Taken together, our observations suggest that Abeta[31-35] might have the ability to activate PKA, which in turn activates the caspase-dependent intrinsic and extrinsic apoptotic pathways, inducing apoptosis in the cortical neurons.
    [Abstract] [Full Text] [Related] [New Search]