These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Isolation and characterization of nucleotide excision repair deficient mutants of the entomopathogenic fungus, Beauveria bassiana.
    Author: Chelico L, Khachatourians GG.
    Journal: J Invertebr Pathol; 2008 May; 98(1):93-100. PubMed ID: 18005981.
    Abstract:
    To better understand DNA repair in the entomopathogenic fungus Beauveria bassiana, three ultraviolet (UV) light sensitive mutants were isolated and characterized to be deficient in nucleotide excision repair (NER). The UV sensitive mutants were scored by comparison to survival of the parental isolate, GK2016, after 36 J/m(2) UV-C irradiation. At this dose, conidial survival of GK2016 was 98% and the mutants LC75, LC194, and LC85 had survival values of 63%, 45%, and 31%, respectively. An immunological method which measured the removal of pyrimidine-(6-4)-pyrimidone photoproducts during repair confirmed the decreased ability of LC75, LC194, and LC85 to remove these UV-induced dimers by NER. The mutants were also found to be deficient in NER at swollen/ germinating conidia and blastospore life cycle stages. The germination of the moderately UV sensitive mutant, LC75, was similar to that of the parental isolate, GK2016, after UV irradiation and incubation to enhance NER. The more sensitive mutants, LC194 and LC85 were 2.1- or 2.7-fold, respectively, less likely to germinate after UV irradiation based on their ability to carry out NER. These NER deficient mutants, the first to be derived from B. bassiana, reveal the importance of NER in spore survival post-UV irradiation.
    [Abstract] [Full Text] [Related] [New Search]