These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gliadin-dependent neuromuscular and epithelial secretory responses in gluten-sensitive HLA-DQ8 transgenic mice.
    Author: Verdu EF, Huang X, Natividad J, Lu J, Blennerhassett PA, David CS, McKay DM, Murray JA.
    Journal: Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G217-25. PubMed ID: 18006603.
    Abstract:
    Celiac disease is a gluten intolerance caused by a T-cell response against human leukocyte antigen (HLA)-DQ2 and DQ8-bound gluten peptides. Some subjects experience gastrointestinal symptoms in the absence of villous atrophy. Here we investigate the potential mechanisms of gut dysfunction in gluten-sensitive HLA-DQ8 transgenic mice. HLA-DQ8 mice were sensitized and gavaged with gliadin 3x/wk for 3 wk (G/G). Controls included 1) nonsensitized mice gavaged with rice (C); 2) gliadin-sensitized mice gavaged with rice (G/R); and 3) BSA-sensitized mice gavaged with BSA (BSA/BSA). CD3(+) intraepithelial lymphocyte, macrophage, and FOX-P3-positive cell counts were determined. Acetylcholine release, small intestinal contractility, and epithelial ion transport were measured. Gut function was investigated after gluten withdrawal and in HLA-DQ6 mice. Intestinal atrophy was not observed in G/G mice. Recruitment of intraepithelial lymphocyte, macrophages, and FOX-P3+ cells were observed in G/G, but not in C, G/R, or BSA/BSA mice. This was paralleled by increased acetylcholine release from the myenteric plexus, muscle hypercontractility, and increased active ion transport in G/G mice. Changes in muscle contractility normalized in DQ8 mice after a gluten withdrawal. HLA-DQ6 controls did not exhibit the abnormalities in gut function observed in DQ8 mice. Gluten sensitivity in HLA-DQ8 mice induces immune activation in the absence of intestinal atrophy. This is associated with cholinergic dysfunction and a prosecretory state that may lead to altered water movements and dysmotility. The results provide a mechanism by which gluten could induce gut dysfunction in patients with a genetic predisposition but without fully evolved celiac disease.
    [Abstract] [Full Text] [Related] [New Search]