These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Preparation, characterization, and photocatalytic activity of Gd3+ doped TiO2 nanoparticles. Author: Mahalakshmi M, Arabindoo B, Palanichamy M, Murugesan V. Journal: J Nanosci Nanotechnol; 2007 Sep; 7(9):3277-85. PubMed ID: 18019161. Abstract: TiO2 and Gd3+ doped TiO2 nanoparticles were prepared by sol-gel method and the materials were characterized by XRD, TEM, SEM-EDX, BET, FT-IR, UV-Vis absorption, and Raman spectral analysis. The photocatalytic activity of nano TiO2 and Gd/TiO2 nanoparticles was evaluated using a model pollutant propoxur, a carbamate pesticide, in a batch type UV photoreactor. The results revealed higher photocatalytic activity for Gd/TiO2 nanoparticles than both TiO2 nanoparticles and commercial TiO2 (Degussa P-25). The enhanced photocatalytic activity of Gd/TiO2 relative to TiO2 is attributed to its increased band gap energy as evidenced from the blue shift to shorter wavelength observed in the UV-Vis abso4ption spectra. The recombination rate of photogenerated electron-hole pair decreased due to increase in the band gap, which enhanced the charge transfer efficiency of Gd/TiO2 nanoparticles. Gd3+ with its half filled 7 f subshell facilitated rapid electron transfer at solid-liquid interface by shallowly trapping the electrons. Among the various dopant level of gadolinium, 0.3 wt% Gd/TiO2 nanoparticles showed higher activity than others due to its higher surface area.[Abstract] [Full Text] [Related] [New Search]