These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Tuning adenosine A1 and A2A receptors activation mediates L-citrulline-induced inhibition of [3H]-acetylcholine release depending on nerve stimulation pattern.
    Author: Timóteo MA, Oliveira L, Campesatto-Mella E, Barroso A, Silva C, Magalhães-Cardoso MT, Alves-do-Prado W, Correia-de-Sá P.
    Journal: Neurochem Int; 2008; 52(4-5):834-45. PubMed ID: 18022291.
    Abstract:
    The influence of nerve stimulation pattern on transmitter release inhibition by L-citrulline, the co-product of NO biosynthesis by nitric oxide synthase (NOS), was studied in the rat phrenic nerve-hemidiaphragm. We also investigated the putative interactions between NOS pathway and the adenosine system. L-citrulline (10-470 microM), the NOS substrate L-arginine (10-470 microM) and the NO donor 3-morpholinylsydnoneimine (SIN-1, 1-10 microM), concentration-dependently inhibited [(3)H]-acetylcholine ([(3)H]-ACh) release from rat motor nerve endings. Increasing stimulus frequency from 5 Hz-trains to 50 Hz-bursts enhanced [(3)H]-ACh release inhibition by l-arginine (47 microM) and L-citrulline (470 microM), whereas the effect of SIN-1 (10 microM) remained unchanged. NOS inhibition with N(omega)-nitro-L-arginine (100 microM) prevented the effect of L-arginine, but not that of L-citrulline. Adenosine deaminase (2.5 U/ml) and the adenosine transport inhibitor, S-(p-nitrobenzyl)-6-thioinosine (10 microM), attenuated release inhibition by L-arginine and L-citrulline. With 5 Hz-trains, blockade of A(1) receptors with 1,3-dipropyl-8-cyclopentyl xanthine (2.5 nM), but not of A(2A) receptors with ZM241385 (10nM), reduced the inhibitory action of l-arginine and L-citrulline; the opposite was verified with 50 Hz-bursts. Blockade of muscarinic M(2) autoreceptors with AF-DX116 (10 nM) also attenuated the effects of L-arginine and L-citrulline with 50 Hz-bursts. L-citrulline (470 microM) increased basal adenosine outflow via the equilibrative nucleoside transport system sensitive to NBTI (10 microM), without significantly (P>0.05) changing the nucleoside release subsequent to nerve stimulation. Data indicate that NOS-derived L-citrulline negatively modulates [(3)H]-ACh release by increasing adenosine outflow channelling to A(1) and A(2A) receptors activation depending on the stimulus paradigm. While adenosine acts predominantly at inhibitory A(1) receptors during 5 Hz-trains, inhibition of ACh release by L-citrulline at 50 Hz-bursts depends on the interplay between adenosine A(2A) and muscarinic M(2) receptors.
    [Abstract] [Full Text] [Related] [New Search]