These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Sodium azide, a bacteriostatic preservative contained in commercially available laboratory reagents, influences the responses of human platelets via the cGMP/PKG/VASP pathway. Author: Russo I, Del Mese P, Viretto M, Doronzo G, Mattiello L, Trovati M, Anfossi G. Journal: Clin Biochem; 2008 Mar; 41(4-5):343-9. PubMed ID: 18022387. Abstract: OBJECTIVE: The bacteriostatic preservative sodium azide (NaN(3)) activates soluble guanylate cyclase (sGC) in vascular tissues, thus elevating cellular 3',5'-cyclic guanosine monophosphate (cGMP). Because the sGC/cGMP pathway is involved in the control of platelet aggregation, we investigated whether in human platelets NaN(3) influences the responses to agonists, cGMP levels and cGMP-regulated pathways. DESIGN AND METHOD: Concentration- and time-dependent effects of NaN(3) (1-100 micromol/L; 5-60 min incubation) on ADP- and collagen-induced aggregation, NO synthase (NOS) activity, cGMP synthesis and vasodilator-stimulated phosphoprotein (VASP) phosphorylation at Ser239 were investigated in platelets from 21 healthy individuals. RESULTS: NaN(3) exerted concentration- and time-dependent antiaggregatory effects starting from 1 micromol/L (IC(50) with 5-min incubation: 2.77+/-0.35 micromol/L with ADP and 4.64+/-0.48 micromol/L with collagen) and significantly increased intraplatelet cGMP levels and phosphorylation of VASP at Ser239 at 1-100 micromol/L; these effects were prevented by sGC inhibition, but not by NOS inhibition. CONCLUSIONS: NaN(3) exerts antiaggregatory effects in human platelets via activation of the sGC/cGMP/VASP pathway. This biological effect must be considered when azide-containing reagents are used for in vitro studies on platelet function.[Abstract] [Full Text] [Related] [New Search]