These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nutrient enrichment reduces constraints on material flows in a detritus-based food web. Author: Cross WF, Wallace JB, Rosemond AD. Journal: Ecology; 2007 Oct; 88(10):2563-75. PubMed ID: 18027759. Abstract: Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material storage and cycling in the ecosystem. Understanding mechanisms and predicting consequences of nutrient-induced changes in material flows requires a quantitative food web approach that combines information on consumer energetics and consumer-resource stoichiometry. We examined effects of a whole-system experimental nutrient enrichment on the trophic basis of production and the magnitude and pathways of carbon (C), nitrogen (N), and phosphorus (P) flows in a detritus-based stream food web. We compared the response of the treated stream to an adjacent reference stream throughout the study. Dietary composition and elemental flows varied considerably among invertebrate functional feeding groups. During nutrient enrichment, increased flows of leaf litter and amorphous detritus to shredders and gatherers accounted for most of the altered flows of C from basal resources to consumers. Nutrient enrichment had little effect on patterns of material flows but had large positive effects on the magnitude of C, N, and P flows to consumers (mean increase of 97% for all elements). Nutrient-specific food webs revealed similar flows of N and P to multiple functional groups despite an order of magnitude difference among groups in consumption of C. Secondary production was more strongly related to consumption of nutrients than C, and increased material flows were positively related to the degree of consumer-resource C:P and C:N imbalances. Nutrient enrichment resulted in an increased proportion of detrital C inputs consumed by primary consumers (from -15% to 35%) and a decreased proportion of invertebrate prey consumed by predators (from -80% to 55%). Our results demonstrate that nutrient enrichment of detritus-based systems may reduce stoichiometric constraints on material flows, increase the contribution of consumers to C, N, and P cycling, alter the proportion of C inputs metabolized by consumers, and potentially lead to reduced ecosystem-level storage of C.[Abstract] [Full Text] [Related] [New Search]