These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glycopeptide dendrimers. Part II.
    Author: Niederhafner P, Sebestík J, Jezek J.
    Journal: J Pept Sci; 2008 Jan; 14(1):44-65. PubMed ID: 18027886.
    Abstract:
    Glycopeptide dendrimers are regularly branched structures containing both carbohydrates and peptides. Various types of these compounds differing in composition and structure are mentioned, together with their practical use spanning from catalysis, transport vehicles to synthetic vaccines. This Part II (for Part I see JeZek J, et al., J. Pept. Sci. 2008; 14: 2-43) covers linear oligomers with variable valency (brush dendrimers, comb dendrimers), sequential oligopeptide carriers SOCn-I and SOCn-II, chitosan-based dendrimers, and brush dendrimers. Other types of glycopeptide dendrimers are self-immolative dendrimers (cascade release dendrimers, domino dendrimers), dendrimers containing omega-amino acids (Gly, beta-Ala, gamma-Abu and epsilon-aminohexanoic acid), etc. Microwave-assisted synthesis of dendrimers and libraries of glycopeptides and glycopeptide dendrimers are also included. Characterization of dendrimers by electromigration methods, mass spectrometry, and time-resolved and nonlinear optical spectroscopy, etc. plays an important role in purity assessment and structure characterization. Physicochemical properties of dendrimers including chirality are given. Stability of dendrimers, their biocompatibility and toxicity are reviewed. Finally, biomedical applications of dendrimers including imaging agents (contrast agents), site-specific drug delivery systems, artificial viruses, synthetic antibacterial, antiviral, and anticancer vaccines, inhibitors of cell surface protein-carbohydrate interactions, intervention with bacterial adhesion, etc. are given. Glycopeptide dendrimers were used also for studying recognition processes, as diagnostics and mimetics, for complexation of different cations, for therapeutic purposes, as immunodiagnostics, and in drug design.
    [Abstract] [Full Text] [Related] [New Search]