These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Integration of two essential virulence modulating signals at the Erwinia chrysanthemi pel gene promoters: a role for Fis in the growth-phase regulation. Author: Lautier T, Blot N, Muskhelishvili G, Nasser W. Journal: Mol Microbiol; 2007 Dec; 66(6):1491-505. PubMed ID: 18028312. Abstract: Production of the essential virulence factors, called pectate lyases (Pels), in the phytopathogenic bacterium Erwinia chrysanthemi is controlled by a complex regulation system and responds to various stimuli, such as the presence of pectin or plant extracts, growth phase, temperature and iron concentration. The presence of pectin and growth phase are the most important signals identified. Eight regulators modulating the expression of the pel genes (encoding Pels) have been characterized. These regulators are organized in a network allowing a sequential functioning of the regulators during infection. Although many studies have been carried out, the mechanisms of control of Pel production by growth phase have not yet been elucidated. Here we report that a fis mutant of E. chrysanthemi showed a strong increase in transcription of the pel genes during exponential growth whereas induction of expression in the parental strain occurred at the end of exponential growth. This reveals that Fis acts to prevent an efficient transcription of pel genes at the beginning of exponential growth and also provides evidence of the involvement of Fis in the growth-phase regulation of the pel genes. By using in vitro DNA-protein interactions and transcription experiments, we find that Fis directly represses the pel gene expression at the transcription initiation step. In addition, we show that Fis acts in concert with KdgR, the main repressor responding to the presence of pectin compounds, to shut down the pel gene transcription. Finally, we find that active Fis is required for the efficient translocation of the Pels in growth medium. Together, these data indicate that Fis tightly controls the availability of Pels during pathogenesis by acting on both their production and their translocation in the external medium.[Abstract] [Full Text] [Related] [New Search]