These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: In vivo cultivation of human articular chondrocytes in a nude mouse-based contained defect organ culture model.
    Author: Mueller-Rath R, Gavénis K, Gravius S, Andereya S, Mumme T, Schneider U.
    Journal: Biomed Mater Eng; 2007; 17(6):357-66. PubMed ID: 18032817.
    Abstract:
    The nude mouse model is an established method to cultivate and investigate tissue engineered cartilage analogues under in vivo conditions. One limitation of this common approach is the lack of appropriate surrounding articular tissues. Thus the bonding capacity of cartilage repair tissue cannot be evaluated. Widely applied surgical techniques in cartilage repair such as conventional and three-dimensional autologous chondrocyte implantation (ACI) based on a collagen gel matrix cannot be included into nude mouse studies, since their application require a contained defect. The aim of this study is to apply an organ culture defect model for the in vivo cultivation of different cell-matrix-constructs. Cartilage defects were created on osteochondral specimens which had been harvested from 10 human knee joints during total knee replacement. Autologous chondrocytes were isolated from the cartilage samples and cultivated in monolayer until passage 2. On each osteochondral block defects were treated either by conventional ACI or a collagen gel seeded with autologous chondrocytes, including a defect left empty as a control. The samples were implanted into the subcutaneous pouches of nude mice and cultivated for six weeks. After retrieval, the specimens were examined histologically, immunohistochemically and by cell morphology quantification. In both, ACI and collagen gel based defect treatment, a repair tissue was formed, which filled the defect and bonded to the adjacent tissues. The repair tissue was immature with low production of collagen type II. In both groups redifferentiation of chondrocytes remained incomplete. Different appearances of interface zones between the repair tissue and the adjacent cartilage were found. The presented contained defect organ culture model offers the possibility to directly compare different types of clinically applied biologic cartilage repair techniques using human articular tissues in a nude mouse model.
    [Abstract] [Full Text] [Related] [New Search]