These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Coordination-driven self-assembly, structures, and dynamic properties of diplatinum hexatriynediyl and butadiynediyl complexes in which the sp carbon chains are shielded by sp3 carbon chains: towards endgroup-endgroup interactions. Author: Owen GR, Stahl J, Hampel F, Gladysz JA. Journal: Chemistry; 2008; 14(1):73-87. PubMed ID: 18033704. Abstract: Sequential reactions of trans-(C6F5)(p-tol3P)2Pt(C[triple chemical bond]C)3SiEt3 (PtC6SiEt3) with nBu4N+ F(-) (THF/methanol), PtCl, KPF6/tBuOK, and CuCl give trans,trans-[(C6F5){(p-tol3P)2}Pt(C[triple chemical bond]C)3Pt{(Pp-tol3)2}(C6F5)] (PtC6Pt) in 95 % yield on multigram scales. Reactions of PtC6Pt and Ar2P(CH2)mPAr2 afford substitution products trans,trans-[(C6F5){(Ar2P(CH2)mPAr2)}Pt(C[triple chemical bond]C)3Pt{(Ar2P(CH2)mPAr2)}(C6F5)] (PtC6Pt-m/Ar; m/Ar=8/p-tol, 78 %; 10/Ph, 82 %; 11/Ph, 69 %; 12/Ph, 57 %; 14/p-tol, 57 %; 14/p-C6H4-tBu, 71 %), in which the diphosphines span the square planar platinum endgroups. An analogous reaction with PEt3 gives a tetrakis PEt3 complex Pt'C6Pt' (72 %). The crystal structures of PtC6Pt, Pt'C6Pt', PtC6Pt-10/Ph, PtC6Pt-11/Ph, and PtC6Pt-14/p-tol or solvates thereof are compared. In PtC6Pt, the endgroups can avoid van der Waals contact, and define angles of 0 degrees . In PtC6Pt-14/p-tol, the sp3 chains twist around the sp chain in a chiral double-helical motif, with an endgroup/endgroup angle of 189 degrees . The sp3 chains are too short to adopt analogous conformations in the other complexes, but laterally shield the sp chain. NMR spectroscopy shows that the helical enantiomers of PtC6Pt-14/p-tol rapidly interconvert in solution at low temperature. A crystal structure of PtC4Pt shows endgroups that are in van der Waals contact and define an angle of 41 degrees . Reactions with Ar2P(CH2)8PAr2 give PtC4Pt-8/Ar (Ar=Ph, 53 %; p-tol, 87 %). Low-temperature NMR spectroscopy establish non-helical chiral conformations. Electrochemical oxidations of the diplatinum complexes are analyzed, the reversibilities of which decrease with increasing sp chain length.[Abstract] [Full Text] [Related] [New Search]