These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dynamics of ultrafast intramolecular charge transfer with 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile.
    Author: Druzhinin SI, Kovalenko SA, Senyushkina T, Zachariasse KA.
    Journal: J Phys Chem A; 2007 Dec 20; 111(50):12878-90. PubMed ID: 18034465.
    Abstract:
    The intramolecular charge transfer (ICT) reaction of 1-tert-butyl-6-cyano-1,2,3,4-tetrahydroquinoline (NTC6) in n-hexane and acetonitrile (MeCN) is investigated by picosecond fluorescence experiments as a function of temperature and by femtosecond transient absorption measurements at room temperature. NTC6 in n-hexane is dual fluorescent from a locally excited (LE) and an ICT state, with a quantum yield ratio Phi'(ICT)/Phi(LE) of 0.35 at +25 degrees C and 0.67 at -95 degrees C, whereas in MeCN mainly an ICT emission is observed. From the temperature dependence of Phi'(ICT)/Phi(LE) for NTC6 in n-hexane, an LE/ICT enthalpy difference DeltaH of -2.4 kJ/mol is determined. For comparison, 1-isopropyl-6-cyano-1,2,3,4-tetrahydroquinoline (NIC6) is also investigated. This molecule does not undergo an ICT reaction, because of its larger energy gap DeltaE(S1,S2). From the molar absorption coefficient epsilonmax of NTC6 as compared with other aminobenzonitriles, a ground-state amino twist angle theta of approximately 22 degrees is deduced. The increase of epsilonmax between n-hexane and MeCN indicates that theta decreases when the solvent polarity becomes larger. Whereas single-exponential LE fluorescence decays are obtained for NIC6 in n-hexane and MeCN, the LE and ICT decays of NTC6 in these solvents are double exponential. For NTC6 in n-hexane at -95 degrees C, with a shortest decay time of 20 ps, the forward (ka=2.5x10(10) s(-1)) and backward (kd=2.7x10(10) s(-1)) rate constants for the LE<-->ICT reaction are determined from the time-resolved LE and ICT fluorescence spectra. For NTC6 in n-hexane and MeCN, the excited-state absorption (ESA) spectrum at 200 fs after excitation is similar to the LE(ESA) spectra of NIC6 and 4-(dimethylamino)benzonitrile (DMABN), showing that LE is the initially excited state for NTC6. These results indicate that the LE states of NTC6, NIC6, and DMABN have a comparable molecular structure. The ICT(ESA) spectrum of NTC6 in n-hexane and MeCN resembles that of DMABN in MeCN, likewise indicating a similar ICT structure for NTC6 and DMABN. From the decay of the LE absorption and the corresponding growing-in for the ICT state of NTC6, it is concluded that the ICT state originates from the LE precursor and is not formed by direct excitation from S0, nor via an S2/ICT conical intersection. The same conclusion was made from the time-resolved (picosecond) fluorescence spectra, where there is no ICT emission at time zero. The decay of the LE(ESA) band of NTC6 in n-hexane occurs with a shortest time tau2 of 2.2 ps. The ICT reaction is much faster (tau2 = 0.82 ps) in the strongly polar MeCN. The absence of excitation wavelength dependence (290 and 266 nm) for the ESA spectra in MeCN also shows that LE is the ICT precursor. With NIC6 in n-hexane and MeCN, a decay or growing-in of the femtosecond ESA spectra is not observed, in line with the absence of an ICT reaction involving an S2/ICT conical intersection.
    [Abstract] [Full Text] [Related] [New Search]