These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Synchronized changes in transcript levels of genes activating cold exposure-induced thermogenesis in brown adipose tissue of experimental animals.
    Author: Watanabe M, Yamamoto T, Kakuhata R, Okada N, Kajimoto K, Yamazaki N, Kataoka M, Baba Y, Tamaki T, Shinohara Y.
    Journal: Biochim Biophys Acta; 2008 Jan; 1777(1):104-12. PubMed ID: 18036333.
    Abstract:
    To identify genes whose expression in brown adipose tissue (BAT) is up- or down-regulated in cold-exposed rats, we performed microarray analysis of RNA samples prepared from the BAT of cold-exposed rats and of rats kept at room temperature. Previously reported elevations of transcript levels of uncoupling protein (UCP1), type II iodothyronine deiodinase (DIO2), and type III adenylate cyclase (AC3) in the BAT of cold-exposed rats over those in that of rats maintained at room temperature were confirmed. In addition to these changes, remarkable elevations of the transcript levels of several genes that seemed to be associated with the processes of cell-cycle regulation and DNA replication were detected in the BAT of cold-exposed rats, possibly reflecting the significant proliferation of brown adipocytes in response to cold exposure. Up-regulation of the gene encoding sarcomeric mitochondrial type creatine kinase in the BAT of cold-exposed rats was also detected by microarray analysis, but subsequent Northern analysis revealed that the expression of not only the sarcomeric mitochondrial type enzyme, but also that of 2 other subtypes, i.e., cytoplasmic brain type and cytoplasmic muscle type, was elevated in the BAT of cold-exposed rats. Microarray analysis also revealed a significant expression of myoglobin in BAT and its elevation in the BAT of cold-exposed rats, and this result was supported by calibrated Northern analysis. On the contrary, several genes such as regulator of G-protein signaling 2 and IMP dehydrogenase 1 were down-regulated in the BAT of cold-exposed rats. The physiological meaning of these changes accompanying cold exposure was discussed.
    [Abstract] [Full Text] [Related] [New Search]