These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Human EEG very high frequency oscillations reflect the number of matches with a template in auditory short-term memory. Author: Lenz D, Jeschke M, Schadow J, Naue N, Ohl FW, Herrmann CS. Journal: Brain Res; 2008 Jul 18; 1220():81-92. PubMed ID: 18036577. Abstract: Auditory perception comprises bottom-up as well as top-down processes. While research in the past has revealed many neural correlates of bottom-up processes, less is known about top-down modulation. Memory processes have recently been associated with oscillations in the gamma-band of human EEG (30 Hz and above) which are enhanced when incoming information matches a stored memory template. Therefore, we investigated event-related potentials (ERPs) and gamma-band activity in 17 healthy participants in a Go/NoGo-task. They listened to four frequency-modulated (FM) sounds which varied regarding the frequency range traversed and the direction of frequency modulation. One sound was defined as target and required a button press. The results of ERPs (N1, P2, N2, and P3) were consistent with previous studies. Analysis of evoked gamma-band responses yielded no significant task-dependent modulation, but we observed a stimulus dependency, which was also present in a control experiment: The amplitude of evoked gamma responses showed an inverted U-shape as a function of stimulus frequency. Investigation of total gamma activity revealed functionally relevant responses at high frequencies (90 Hz to 250 Hz), which showed significant modulations by matches with STM: Complete matches led to the strongest enhancements (starting around 100 ms after stimulus onset) and partial matches resulted in intermediate ones. The results support the conclusion that very high frequency oscillations (VHFOs) are markers of active stimulus discrimination in STM matching processes and are attributable to higher cognitive functions.[Abstract] [Full Text] [Related] [New Search]