These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. Author: Minkeviciene R, Ihalainen J, Malm T, Matilainen O, Keksa-Goldsteine V, Goldsteins G, Iivonen H, Leguit N, Glennon J, Koistinaho J, Banerjee P, Tanila H. Journal: J Neurochem; 2008 May; 105(3):584-94. PubMed ID: 18042177. Abstract: We assessed baseline and KCl-stimulated glutamate release by using microdialysis in freely moving young adult (7 months) and middle-aged (17 months) transgenic mice carrying mutated human amyloid precursor protein and presenilin genes (APdE9 mice) and their wild-type littermates. In addition, we assessed the age-related development of amyloid pathology and spatial memory impaired in the water maze and changes in glutamate transporters. APdE9 mice showed gradual spatial memory impairment between 6 and 15 months of age. The stimulated glutamate release declined very robustly in 17-month-old APdE9 mice as compared to 7-month-old APdE9 mice. This age-dependent decrease in stimulated glutamate release was also evident in wild-type mice, although it was not as robust as in APdE9 mice. When compared to individual baselines, all aged wild-type mice showed 25% or greater increase in glutamate release upon KCl stimulation, but none of the aged APdE9 mice. There was an age-dependent decline in VGLUT1 levels, but not in the levels of VGLUT2, GLT-1 or synaptophysin. Astrocyte activation as measured by glial acidic fibrillary protein was increased in middle-aged APdE9 mice. Blunted pre-synaptic glutamate response may contribute to memory deficit in middle-aged APdE9 mice.[Abstract] [Full Text] [Related] [New Search]