These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Simulation of the chemical fate and bioavailability of liquid elemental mercury drops from gold mining in Amazonian freshwater systems.
    Author: Dominique Y, Muresan B, Duran R, Richard S, Boudou A.
    Journal: Environ Sci Technol; 2007 Nov 01; 41(21):7322-9. PubMed ID: 18044506.
    Abstract:
    Elemental mercury (Hg(o)) for gold amalgamation is the main process applied by artisanal gold miners in South America, leading to important discharges into freshwater ecosystems. Through a 28-day experimental approach based on indoor microcosms, we simulated the chemical fate and bioavailability of Hg(o) droplets in the presence or absence of sediment collected from a typical forest creek that is unaffected by gold mining activities. Our results clearly showed significant mercury transfers in the water column in both the dissolved gaseous Hg(o) and oxidized (Hg(II)) forms, with a marked effect of the presence of sediment. After 28 days, Hg total (HgT) concentration in the water column was 25 times higher in sediment-free units (108 +/- 17 vs. 4 +/- 0.4 nM). Methylmercury (MeHg) determinations in the dissolved fraction showed a significant increase only in the presence of sediment after 7 and 14 days. Zebrafish (Danio rerio) were used as indicators for mercury bioavailability. The HgT determinations in four organs revealed significant accumulation levels as early as 7 days exposure, with marked differences in favor of fish collected from the sediment-free units. Significant MeHg increases were observed in the four organs only when sediment was present. Genomic tools applied to estimate sulfate-reducing bacteria communities showed mercury impacts on their diversity and distribution in the different compartments (water, sediment, biofilm, fish gut).
    [Abstract] [Full Text] [Related] [New Search]