These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characterization of the covalently bound anionic flavin radical in monoamine oxidase a by electron paramagnetic resonance.
    Author: Kay CW, El Mkami H, Molla G, Pollegioni L, Ramsay RR.
    Journal: J Am Chem Soc; 2007 Dec 26; 129(51):16091-7. PubMed ID: 18044898.
    Abstract:
    It was recently suggested that partially reduced monoamine oxidase (MAO) A contains an equilibrium mixture of an anionic flavin radical and a tyrosyl radical (Rigby, S. E.; et al. J. Biol. Chem. 2005, 280, 4627-4632). These observations formed the basis for a revised radical mechanism for MAO. In contrast, an earlier study of MAO B only found evidence for an anionic flavin radical (DeRose, V. J.; et al. Biochemistry 1996, 35, 11085-11091). To resolve the discrepancy, we have performed continuous-wave electron paramagnetic resonance at 94 GHz (W-band) on the radical form of MAO A. A comparison with d-amino acid oxidase (DAAO) demonstrates that both enzymes only contain anionic flavin radicals. Pulsed electron-nuclear double resonance spectra of the two enzymes recorded at 9 GHz (X-band) reveal distinct hyperfine coupling patterns for the two flavins. Density functional theory calculations show that these differences can be understood in terms of the difference at C8alpha of the isoalloxazine ring. DAAO contains a noncovalently bound flavin whereas MAO A contains a flavin covalently bound to a cysteinyl residue at C8alpha. The similar electronic structures and hydrophobic environments of MAO and DAAO, and the similar structural motifs of their substrates suggest that a direct hydride transfer catalytic mechanism established for DAAO (Umhau, S.; et al. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 12463-12468) should be considered for MAO.
    [Abstract] [Full Text] [Related] [New Search]