These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: ATP synthesis by decarboxylation phosphorylation.
    Author: Dimroth P, von Ballmoos C.
    Journal: Results Probl Cell Differ; 2008; 45():153-84. PubMed ID: 18049805.
    Abstract:
    Adenosine triphosphate (ATP) is used as a general energy source by all living cells. The free energy released by hydrolyzing its terminal phosphoric acid anhydride bond to yield ADP and phosphate is utilized to drive various energy-consuming reactions. The ubiquitous F(1)F(0) ATP synthase produces the majority of ATP by converting the energy stored in a transmembrane electrochemical gradient of H(+) or Na(+) into mechanical rotation. While the mechanism of ATP synthesis by the ATP synthase itself is universal, diverse biological reactions are used by different cells to energize the membrane. Oxidative phosphorylation in mitochondria or aerobic bacteria and photophosphorylation in plants are well-known processes. Less familiar are fermentation reactions performed by anaerobic bacteria, wherein the free energy of the decarboxylation of certain metabolites is converted into an electrochemical gradient of Na(+) ions across the membrane (decarboxylation phosphorylation). This chapter will focus on the latter mechanism, presenting an updated survey on the Na(+)-translocating decarboxylases from various organisms. In the second part, we provide a detailed description of the F(1)F(0) ATP synthases with special emphasis on the Na(+)-translocating variant of these enzymes.
    [Abstract] [Full Text] [Related] [New Search]