These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Modulation of human corticomuscular beta-range coherence with low-level static forces. Author: Witte M, Patino L, Andrykiewicz A, Hepp-Reymond MC, Kristeva R. Journal: Eur J Neurosci; 2007 Dec; 26(12):3564-70. PubMed ID: 18052988. Abstract: Although corticomuscular synchronization in the beta range (15-30 Hz) was shown to occur during weak steady-state contractions, an examination of low-level forces around 10% of the maximum voluntary contraction (MVC) is still missing. We addressed this question by investigating coherence between electroencephalogram (EEG) and electromyogram (EMG) as well as cortical spectral power during a visuomotor task. Eight healthy right-handed subjects compensated isometrically static forces at a level of 4% and 16% of MVC with their right index finger. While 4% MVC was accompanied by low coherence values in the middle to high beta frequency range (25-30 Hz), a significant increase of coherence mainly confined to low beta frequencies (19-20 Hz) was observed with force of 16% MVC. Furthermore, this increase was associated with better performance, as reflected in decreased relative error in force during 16% MVC. We additionally show that periods of good motor performance within each condition were associated with higher values of EEG-EMG coherence and spectral power. In conclusion, our results suggest a role for beta-range corticomuscular coherence in effective sensorimotor integration, thus stabilizing corticospinal communication.[Abstract] [Full Text] [Related] [New Search]