These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Coupled lateral bending-torsional vibration sensitivity of atomic force microscope cantilever.
    Author: Lee HL, Chang WJ.
    Journal: Ultramicroscopy; 2008 Jul; 108(8):707-11. PubMed ID: 18054438.
    Abstract:
    We study the influence of the contact stiffness and the ration between cantilever and tip lengths on the resonance frequencies and sensitivities of lateral cantilever modes. We derive expressions to determine both the effective resonance frequency and the mode sensitivity of an atomic force microscope (AFM) rectangular cantilever. Once the contact stiffness is given, the resonance frequency and the sensitivity of the vibration modes can be obtained from the expression. The results show that each mode has a different resonant frequency to variations in contact stiffness and each frequency increased until it eventually reached a constant value at very high contact stiffness. The low-order vibration modes are more sensitive to vibration than the high-order mode when the contact stiffness is low. However, the situation is reversed when the lateral contact stiffness became higher. Furthermore, increasing the ratio of tip length to cantilever length increases the vibration frequency and the sensitivity of AFM cantilever.
    [Abstract] [Full Text] [Related] [New Search]