These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Exercise-induced arterial hypoxaemia in active young women. Author: Guenette JA, Sheel AW. Journal: Appl Physiol Nutr Metab; 2007 Dec; 32(6):1263-73. PubMed ID: 18059604. Abstract: Studies examining pulmonary gas exchange during exercise have primarily focused on young healthy men, whereas the female response to exercise has received limited attention. Evidence is accumulating that the response of the lungs, airways, and (or) respiratory muscles to exercise is less than ideal and this may significantly compromise oxygen transport in certain groups of otherwise healthy, fit, active, male subjects. Women may be even more susceptible to exercise-induced pulmonary limitations than height-matched men, by virtue of their smaller lung volumes, lower maximal expiratory flow rates, and smaller diffusion surface areas. We have recently shown that exercise-induced arterial hypoxaemia (EIAH) is more prevalent and occurs at relatively lower fitness levels in females than in males. Despite this finding, few physiologically based mechanisms have been identified to explain why women may be more susceptible to EIAH than men. Potential mechanisms of EIAH include relative alveolar hypoventilation, ventilation-perfusion inequality, and diffusion limitation. Whether these mechanisms are different between sexes remains controversial. The primary purpose of this review is to summarize the available data on EIAH in women and to discuss potential sex-based mechanisms for gas exchange impairment. Furthermore, we discuss unresolved questions dealing with pulmonary system limitations during exercise in women.[Abstract] [Full Text] [Related] [New Search]