These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Lovastatin inhibits oxidized low-density lipoprotein-induced plasminogen activator inhibitor and transforming growth factor-beta1 expression via a decrease in Ras/extracellular signal-regulated kinase activity in mesangial cells.
    Author: Song CY, Kim BC, Lee HS.
    Journal: Transl Res; 2008 Jan; 151(1):27-35. PubMed ID: 18061125.
    Abstract:
    Oxidized low-density lipoprotein (Ox-LDL) might be involved in the progression of renal disease. Ox-LDL stimulation of plasminogen activator inhibitor-1 (PAI-1) expression via transforming growth factor-beta (TGF-beta)/Smad signaling in mesangial cells required activation of extracellular signal-regulated kinase (ERK). Mevalonate depletion by 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors, or statins, decreases the levels of farnesyl pyrophosphate (FPP) for isoprenylation of Ras. We postulate that statins may ameliorate the Ox-LDL-induced mesangial matrix accumulation by inhibiting Ras/ERK activation with subsequent downregulation of TGF-beta target genes. Quiescent mesangial cells were incubated for 18 h with and without the presence of lovastatin before 50 microg/mL of Ox-LDL treatment for 1 h. Lovastatin inhibited markedly the stimulatory effects of Ox-LDL on ERK1/2 activation, nuclear Smad3 expression, TGF-beta1 and PAI-1 mRNA and protein expression, and PAI-1 luciferase activity. These inhibitory effects of lovastatin were reversed almost completely by mevalonate or FPP. Similar to lovastatin, FTI-277, which is an inhibitor of Ras farnesylation, decreased the Ox-LDL-induced activation of ERK/Smad3 and induction of TGF-beta1/PAI-1. These results indicate that lovastatin prevents the Ox-LDL-induced Ras/ERK activation that results in inhibition of Smad3 activation in mesangial cells with subsequent downregulation of TGF-beta target genes. Thus, statins seem to have antifibrotic effects through their anti-TGF-beta response that are relevant in the treatment of chronic renal disease with dyslipidemia.
    [Abstract] [Full Text] [Related] [New Search]