These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: [Study progress on compatible solutes in moderately halophilic bacteria]. Author: Zhao BS, Yang LF, Wang L, Lu WD, Yang SS. Journal: Wei Sheng Wu Xue Bao; 2007 Oct; 47(5):937-41. PubMed ID: 18062278. Abstract: Moderately halophilic bacteria which grow best in media with 3% to 15% salt constitute a heterogenous group of microorganisms which belong to different genera. These bacteria can inhabit the salt or soda lakes, coastal lagoons or man-made salterns. Moderately halophilc bacteria living in higher saline environments can not only cope with high osmotic stress but also adapt osmotic shock in short time. To adapt to these environments, all the species make a osmoprotection by the accumulation a restricted range of low molecular mass molecules, small, organic compatible solutes, such as sugars, amino acids, betaines and ectoines. Therefore, the osmoadaptation of moderately halophilc bacteria is regulated by the so-called "compatible solute" strategy. Compatible solutes are operationally defined as organic osmolytes that can be amassed by the cell in exceedingly high concentrations without disturbing vital cellular functions and the correct folding of proteins. As a result, compatible solutes can make important contributions to the restoration of the turgor under conditions of low water activity by counteracting the efflux of water from the cell. In addition, they have a stabilizing, both in vivo and vitro, on the native structure of proteins and cell components. This mechanism has a minimal requirement for genetic change and a high degree of flexibility in allowing moderate halophiles to adapt to saline environment. In this review, the adaptation to saline environments, the variety and characteristic of compatible solutes, and the functional mechanism of moderately halophilic bacteria are reviewed and discussed.[Abstract] [Full Text] [Related] [New Search]