These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of apoptosis signal-regulating kinase 1 and oxidative stress mediate age-dependent vulnerability to 3-nitropropionic acid in the mouse striatum. Author: Minn Y, Cho KJ, Kim HW, Kim HJ, Suk SH, Lee BI, Kim GW. Journal: Neurosci Lett; 2008 Jan 10; 430(2):142-6. PubMed ID: 18063477. Abstract: The mitochondrial toxin, 3-nitropropionic acid (3-NP), produces age-dependent oxidative stress and selective striatal damage, which may simulate Huntington's disease starting in middle age. Recent reports showed that apoptosis signal-regulating kinase 1 (Ask1) activated by oxidative stress triggers a cell death signaling pathway. 3-NP was injected to the striatum in C57BL/6J mice. We have confirmed that striatal lesion volume and DNA fragmentation were age-dependent after 3-NP treatment. In the non-injured striatum of the middle-aged group, the protein levels of Ask1 and its active form, phosphorylated Ask1 (pAsk1), were significantly higher than in the young group. Ask1 increased more in the 3-NP injured striatum of the middle-aged group than in the non-injured striatum, and subsequently the activity of pAsk1 was significantly higher than in the young group. However, middle-aged SOD1Tg mice showed significant reductions of Ask1 and pAsk1 in the injured and the non-injured striatum compared to the middle-aged group. In particular, apoptosis signal transduction and cell death were significantly inhibited by the reduction of Ask1 expression using siRNA. Present results suggest that age-related upregulation of Ask1 and oxidative stress may mediate age-dependent striatal vulnerability to 3-NP.[Abstract] [Full Text] [Related] [New Search]