These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Equivalent heart rate during ventricular fibrillation in the dog heart: mechanoenergetic analysis.
    Author: Yaku H, Goto Y, Futaki S, Ohgoshi Y, Kawaguchi O, Hata K, Takasago T, Suga H.
    Journal: Jpn J Physiol; 1991; 41(6):945-59. PubMed ID: 1806676.
    Abstract:
    We propose equivalent heart rate (eHR) as an estimate of the frequency of contractions of individual myocytes in a fibrillating ventricle by analyzing mechanics and energetics of the ventricle. Using the isolated, cross-circulated dog heart preparation, we determined eHR in two different ways. First, we obtained eHR (eHR1) from myocardial O2 consumption (Vo2)-equivalent pressure-volume area (ePVA) data points during ventricular fibrillation (VF) by utilizing the Vo2-pressure-volume area (PVA) relation in the beating state. PVA is the area surrounded by the end-systolic and end-diastolic pressure-volume relations and the systolic pressure-volume trajectory in the pressure-volume diagram. PVA has been shown to represent the total mechanical energy generated by each contraction. We have recently proposed ePVA as a measure of the total mechanical energy generated by single contractions of all individual asynchronously contracting myocytes in a fibrillating ventricle. ePVA is the area surrounded by the horizontal line at the VF pressure and the end-systolic and end-diastolic pressure-volume relations in the beating state. Second, we measured Vo2 in beating state at various heart rates and Vo2 during VF under a mechanically unloaded condition. By comparing these fibrillating and beating Vo2 values, we determined eHR (eHR2) for the fibrillating state. eHR1 was 216 +/- 27 beats/min and eHR2 was 223 +/- 26 beats/min. These two values were not significantly different. We conclude that the average frequency of contractions of individual myocytes in a fibrillating ventricle is equivalent approximately to 220 beats/min in terms of ventricular energetics.
    [Abstract] [Full Text] [Related] [New Search]