These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Expanded sodalite-type metal-organic frameworks: increased stability and H(2) adsorption through ligand-directed catenation.
    Author: Dinca M, Dailly A, Tsay C, Long JR.
    Journal: Inorg Chem; 2008 Jan 07; 47(1):11-3. PubMed ID: 18067285.
    Abstract:
    The torsion between the central benzene ring and the outer aromatic rings in 1,3,5-tri-p-(tetrazol-5-yl)phenylbenzene (H3TPB-3tz) and the absence of such strain in 2,4,6-tri-p-(tetrazol-5-yl)phenyl-s-triazine (H3TPT-3tz) are shown to allow the selective synthesis of noncatenated and catenated versions of expanded sodalite-type metal-organic frameworks. The reaction of H3TPB-3tz with CuCl2.2H2O affords the noncatenated compound Cu3[(Cu4Cl)3(TPB-3tz)8]2.11CuCl2.8H2O.120DMF (2), while the reaction of H3TPT-3tz with MnCl2.4H2O or CuCl2.2H2O generates the catenated compounds Mn3[(Mn4Cl)3(TPT-3tz)8]2.25H2O.15CH3OH.95DMF (3) and Cu3[(Cu4Cl)3(TPT-3tz)8]2.xsolvent (4). Significantly, catenation helps to stabilize the framework toward collapse upon desolvation, leading to an increase in the surface area from 1120 to 1580 m2/g and an increase in the hydrogen storage capacity from 2.8 to 3.7 excess wt % at 77 K for 2 and 3, respectively. The total hydrogen uptake in desolvated 3 reaches 4.5 wt % and 37 g/L at 80 bar and 77 K, demonstrating that control of catenation can be an important factor in the generation of hydrogen storage materials.
    [Abstract] [Full Text] [Related] [New Search]