These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Substituted benzylaminoalkylindoles with preference for the sigma2 binding site.
    Author: Mamolo MG, Zampieri D, Zanette C, Florio C, Collina S, Urbano M, Azzolina O, Vio L.
    Journal: Eur J Med Chem; 2008 Oct; 43(10):2073-81. PubMed ID: 18069094.
    Abstract:
    In the attempt to develop new sigma ligands we synthesized a series of N-benzyl-3-[1-(4-fluorophenyl)-1H-indol-3-yl]-N-methylpropan-1-amines and N-benzyl-4-[1-(4-fluorophenyl)-1H-indol-3-yl]-N-methylbutan-1-amines variously substituted on the phenyl ring. The displacement percentages of [3H]-DTG and [3H]-(+)-pentazocine determined in rat liver homogenates by these compounds at the fixed 100 nM concentration have been determined as a preliminary evaluation of their sigma1 and sigma2 affinity, respectively. The results suggested that the phenyl substituents may positively modulate, in comparison with the unsubstituted compound, the ability to displace [3H]-DTG from sigma2 sites, whereas the same phenyl substituents reduced the displacement percentages of [3H]-(+)-pentazocine from sigma1 sites. Some of these compounds were selected for radioligand binding assays. Compounds with a butylene intermediate chain displayed the greatest binding affinity for sigma2 over sigma1 receptors. The butylene derivative with 2,4-dimethyl substitution on the phenyl ring showed the greatest sigma2 affinity (sigma2Ki=5.9 nM) and an appreciable sigma2 over sigma1 selectivity (sigma1Ki/sigma2Ki=22). The obtained results suggest that a butylene chain separating the indole moiety from variously substituted benzylamino groups may be required to their interaction with a hypothetical secondary sigma2 binding site.
    [Abstract] [Full Text] [Related] [New Search]