These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A quantum chemistry study of the Cl atom reaction with formaldehyde.
    Author: Gruber-Stadler M, Mühlhäuser M, Sellevåg SR, Nielsen CJ.
    Journal: J Phys Chem A; 2008 Jan 10; 112(1):9-22. PubMed ID: 18069803.
    Abstract:
    The elementary vapor-phase reaction between Cl atoms and HCHO has been studied by ab initio methods. Calculations at the MP2, MP3, MP4(SDTQ), CCSD, CCSD(T), and MRD-CI levels of theory show that the reaction is characterized by a low electronic barrier; excluding the effects of spin-orbit splitting in Cl, our best estimate at the MRD-CI/aug-cc-pVTZ//RHF-RCCSD(T)/aug-cc-pVTZ level of theory predicts a Born-Oppenheimer barrier height of 0.7 kJ mol-1. The energies of the lowest six electronic states as resulting from MRD-CI calculations are presented at discrete points along the reaction path, and two avoided crossings are found in the transition state region. The spin-orbit splitting in Cl is also calculated along the reaction path; it is not negligible in the transition state region and is found to increase the barrier by only 1.4 kJ mol-1 at the RCCSD(T)/aug-cc-pVTZ transition state geometry. The minimum energy path of the reaction connects an energetically weakly stabilized adduct on the flat potential surface on the reactant side and an energetically strongly stabilized postreaction adduct. The reaction rate coefficient and the kinetic isotope effects were calculated using improved canonical variational theory with small curvature tunneling (ICVT/SCT), and the results were compared to experimental data. The experimental reaction rate coefficient is reproduced within its uncertainty limits by variational transition state theory with interpolated single-point energy corrections (ISPE) at the MP4(SDTQ) level of theory and by conventional transition state theory with interpolated optimized energies (IOE) at the MRD-CI//RCCSD(T) level of theory and interpolated optimized geometries at the RCCSD(T) level of theory on an MP2/aug-cc-pVTZ potential energy surface when employing scaled vibrational frequencies.
    [Abstract] [Full Text] [Related] [New Search]