These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A SacB mutagenesis strategy reveals that the Bartonella quintana variably expressed outer membrane proteins are required for bloodstream infection of the host.
    Author: MacKichan JK, Gerns HL, Chen YT, Zhang P, Koehler JE.
    Journal: Infect Immun; 2008 Feb; 76(2):788-95. PubMed ID: 18070893.
    Abstract:
    Bartonella bacteria adhere to erythrocytes and persistently infect the mammalian bloodstream. We previously identified four highly conserved Bartonella quintana adhesin genes that undergo phase variation during prolonged bloodstream infection. The variably expressed outer membrane proteins (Vomp) encoded by these genes are members of the trimeric autotransporter adhesin family. Each B. quintana Vomp appears to contribute a different adhesion phenotype, likely mediated by the major variable region at the adhesive tip of each Vomp. Although studies document that the Vomp adhesins confer virulence phenotypes in vitro, little is known about in vivo virulence strategies of Bartonella. We sought to determine whether the B. quintana Vomp adhesins are necessary for infection in vivo by using a vomp null mutant. It first was necessary to develop a system to generate in-frame deletions of defined genes by allelic exchange in a wild-type Bartonella background, which had not been achieved previously. We utilized sacB negative selection to generate a targeted, in-frame, markerless deletion of the entire vomp locus in B. quintana. We also recently developed the first animal model for B. quintana infection, and using this model, we demonstrate here that the deletion of the entire vomp locus, but not the deletion of two vomp genes, results in a null mutant strain that is incapable of establishing bloodstream infection in vivo. The Vomp adhesins therefore represent critical virulence factors in vivo, warranting further study. Finally, our allelic exchange strategy provides an important advance in the genetic manipulation of all Bartonella species and, combined with the animal model that recapitulates human disease, will facilitate pathogenesis studies of B. quintana.
    [Abstract] [Full Text] [Related] [New Search]