These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of moisture transport on microclimate under T-shirts. Author: Dai XQ, Imamura R, Liu GL, Zhou FP. Journal: Eur J Appl Physiol; 2008 Sep; 104(2):337-40. PubMed ID: 18071744. Abstract: Water transport through garments has influence on the microclimate between the garments and the body beneath; thus the thermal comfort feeling for the wearer. Soybean protein fiber (SPF), a new type environmental fiber, which has been reported to be superior in water transfer, is often blended with cotton to improve the water transport property. In this paper, T-shirts made of this SPF/cotton blended fabric were focused in comparison with T-shirts made of cotton fabric. Wicking and immersion tests were carried out on the two types of fabrics to investigate the water transport and absorption properties, respectively; wear trials of T-shirts made of the fabrics were also conducted. Comparing with the cotton fabric which had better water absorptive property, it was found that the blended fabric with superior wicking ability could not only delay the increase of the vapor pressure under the T-shirt at the beginning of the exercise, but also help to keep it lower through the exercise significantly, and also kept the skin temperature under the T-shirt lower. It was made clear that it is the water transfer property rather than the water absorption property helps to take away sweat quickly and prevents the increase of the humidity and temperature at skin surface, thus maintaining a comfort microclimate under garments.[Abstract] [Full Text] [Related] [New Search]