These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A systematic density functional study of the zero-field splitting in Mn(II) coordination compounds. Author: Zein S, Duboc C, Lubitz W, Neese F. Journal: Inorg Chem; 2008 Jan 07; 47(1):134-42. PubMed ID: 18072763. Abstract: This work presents a detailed evaluation of the performance of density functional theory (DFT) for the prediction of zero-field splittings (ZFSs) in Mn(II) coordination complexes. Eighteen experimentally well characterized four-, five-, and six-coordinate complexes of the general formula [Mn(L)nL'2] with L' = Cl, Br, I, NCS, or N3 (L = an oligodentate ligand) are considered. Several DFT-based approaches for the prediction of the ZFSs are compared. For the estimation of the spin-orbit coupling (SOC) part of the ZFS, it was found that the Pederson-Khanna (PK) approach is more successful than the previously proposed quasi-restricted orbitals (QRO)-based method. In either case, accounting for the spin-spin (SS) interaction either with or without the inclusion of the spin-polarization effects improves the results. This argues for the physical necessity of accounting for this important contribution to the ZFS. On average, the SS contribution represents approximately 30% of the axial D parameters. In addition to the SS part, the SOC contributions of d-d spin flip (alphabeta) and ligand-to-metal charge transfer excited states (betabeta) were found to dominate the SOC part of the D parameter; the observed near cancellation between the alphaalpha and betaalpha parts is discussed in the framework of the PK model. The calculations systematically (correlation coefficient approximately 0.99) overestimate the experimental D values by approximately 60%. Comparison of the signs of calculated and measured D values shows that the signs of the calculated axial ZFS parameters are unreliable once E/D > 0.2. Finally, we find that the calculated D and E/D values are highly sensitive to small structural changes. It is observed that the use of theoretically optimized geometries leads to a significant deterioration of the theoretical predictions relative to the experimental geometries derived from X-ray diffraction. The standard deviation of the theoretical predictions for the D values almost doubles from approximately 0.1 to approximately 0.2 cm-1 upon using quantum chemically optimized structures. We do not find any noticeable improvement in considering basis sets larger than standard double- (SVP) or triple-zeta (TZVP) basis sets or using functionals other than the BP functional.[Abstract] [Full Text] [Related] [New Search]