These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: CLOCK-mediated acetylation of BMAL1 controls circadian function. Author: Hirayama J, Sahar S, Grimaldi B, Tamaru T, Takamatsu K, Nakahata Y, Sassone-Corsi P. Journal: Nature; 2007 Dec 13; 450(7172):1086-90. PubMed ID: 18075593. Abstract: Regulation of circadian physiology relies on the interplay of interconnected transcriptional-translational feedback loops. The CLOCK-BMAL1 complex activates clock-controlled genes, including cryptochromes (Crys), the products of which act as repressors by interacting directly with CLOCK-BMAL1. We have demonstrated that CLOCK possesses intrinsic histone acetyltransferase activity and that this enzymatic function contributes to chromatin-remodelling events implicated in circadian control of gene expression. Here we show that CLOCK also acetylates a non-histone substrate: its own partner, BMAL1, is specifically acetylated on a unique, highly conserved Lys 537 residue. BMAL1 undergoes rhythmic acetylation in mouse liver, with a timing that parallels the downregulation of circadian transcription of clock-controlled genes. BMAL1 acetylation facilitates recruitment of CRY1 to CLOCK-BMAL1, thereby promoting transcriptional repression. Importantly, ectopic expression of a K537R-mutated BMAL1 is not able to rescue circadian rhythmicity in a cellular model of peripheral clock. These findings reveal that the enzymatic interplay between two clock core components is crucial for the circadian machinery.[Abstract] [Full Text] [Related] [New Search]