These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: A statistical rescoring scheme for protein-ligand docking: Consideration of entropic effect. Author: Lee J, Seok C. Journal: Proteins; 2008 Feb 15; 70(3):1074-83. PubMed ID: 18076034. Abstract: Computational prediction of protein-ligand binding modes provides useful information on the relationship between structure and activity needed for drug design. A statistical rescoring method that incorporates entropic effect is proposed to improve the accuracy of binding mode prediction. A probability function for two sampled conformations to belong to the same broad basin in the potential energy surface is introduced to estimate the contribution of the state represented by a sampled conformation to the configurational integral. The rescoring function is reduced to the colony energy introduced by Xiang et al. (Proc Natl Acad Sci USA 2002;99:7432-7437) when a particular functional form for the probability function is used. The scheme is applied to rescore protein-ligand complex conformations generated by AutoDock. It is demonstrated that this simple rescoring improves prediction accuracy substantially when tested on 163 protein-ligand complexes with known experimental structures. For example, the percentage of complexes for which predicted ligand conformations are within 1 A root-mean-square deviation from the native conformations is doubled from about 20% to more than 40%. Rescoring with 11 different scoring functions including AutoDock scoring functions were also tested using the ensemble of conformations generated by Wang et al. (J Med Chem 2003;46:2287-2303). Comparison with other methods that use clustering and estimation of conformational entropy is provided. Examination of the docked poses reveals that the rescoring corrects the predictions in which ligands are tightly fit into the binding pockets and have low energies, but have too little room for conformational freedom and thus have low entropy.[Abstract] [Full Text] [Related] [New Search]