These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The point mutation A34F causes dimerization of GB1.
    Author: Jee J, Byeon IJ, Louis JM, Gronenborn AM.
    Journal: Proteins; 2008 May 15; 71(3):1420-31. PubMed ID: 18076051.
    Abstract:
    The immunoglobulin-binding domain B1 of streptococcal protein G (GB1), a very stable, small, single-domain protein, is one of the most extensively used models in the area of protein folding and design. Variants derived from a library of randomized hydrophobic core residues previously revealed alternative folds, namely a completely intertwined tetramer (Frank et al., Nat Struct Biol 2002;9:877-885) and a domain-swapped dimer (Byeon et al., J Mol Biol 2003;333:141-152). Here, we report the NMR structure of the single amino acid mutant Ala-34-Phe which exists as side-by-side dimer. The dimer dissociation constant is 27 +/- 4 microM. The dimer interface comprises two structural elements: First, the beta-sheets of the two monomers pair in an antiparallel arrangement, thereby forming an eight-stranded beta-sheet. Second, the alpha-helix is shortened, ending in a loop that engages in intermolecular contacts. The largest difference between the monomer unit in the A34F dimer and the monomeric wild-type GB1 is the dissolution of the C-terminal half of the alpha-helix associated with a pronounced slow conformational motion of the interface loop. This involves a large movement of the Tyr-33 side chain that swings out from the monomer to engage in dimer contacts.
    [Abstract] [Full Text] [Related] [New Search]