These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of apical NHE3 trafficking by ouabain-induced activation of the basolateral Na+-K+-ATPase receptor complex.
    Author: Cai H, Wu L, Qu W, Malhotra D, Xie Z, Shapiro JI, Liu J.
    Journal: Am J Physiol Cell Physiol; 2008 Feb; 294(2):C555-63. PubMed ID: 18077602.
    Abstract:
    The long-term effects of ouabain on transepithelial Na(+) transport involve transcriptional downregulation of apical Na(+)/H(+) exchanger isoform 3 (NHE3). The aim of this study was to determine whether ouabain could acutely regulate NHE3 via a posttranscriptional mechanism in LLC-PK1 cells. We observed that the basolateral, but not apical, application of ouabain for 1 h significantly reduced transepithelial Na(+) transport. This effect was not due to changes in the integrity of tight junctions or increases in the intracellular Na(+) concentration. Ouabain regulated the trafficking of NHE3 and subsequently inhibited its activity, a process independent of intracellular Na(+) concentration. Ouabain-induced NHE3 trafficking was abolished by either cholesterol depletion or Src inhibition. Moreover, ouabain increased the intracellular Ca(2+) concentration. Pretreatment of cells with the intracellular Ca(2+) chelator BAPTA-AM blocked ouabain-induced trafficking of NHE3. Also, blockade of Na(+)-K(+)-ATPase endocytosis by a phosphatidylinositol 3-kinase inhibitor was equally effective in attenuating ouabain-induced NHE3 trafficking. These data indicate that ouabain acutely stimulates NHE3 trafficking by activating the basolateral Na(+)-K(+)-ATPase signaling complex. Taken together with our previous observations, we propose that ouabain can simultaneously regulate basolateral Na(+)-K(+)-ATPase and apical NHE3, leading to inhibition of transepithelial Na(+) transport. This mechanism may be relevant to proximal tubular Na(+) handling during conditions associated with increases in circulating endogenous cardiotonic steroids.
    [Abstract] [Full Text] [Related] [New Search]