These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 14-3-3zeta is indispensable for aggregate formation of polyglutamine-expanded huntingtin protein. Author: Omi K, Hachiya NS, Tanaka M, Tokunaga K, Kaneko K. Journal: Neurosci Lett; 2008 Jan 24; 431(1):45-50. PubMed ID: 18078716. Abstract: Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder caused by polyglutamine (polyQ) expansions in the huntingtin (Htt) protein. A hallmark of HD is the presence of aggregates-predominantly composed of NH(2)-terminal fragments of polyQ-expanded Htt-in the nucleus and cytoplasm of affected neurons. We previously proposed that 14-3-3zeta might act as a sweeper of misfolded proteins by facilitating the formation of aggregates possibly for neuroprotection; these aggregates are referred to as inclusion bodies. However, evidence available in this regard is indirect and circumstantial. In this study, analysis of the aggregation-prone protein Htt encoded by HD gene exon 1 containing polyglutamine expansions (Htt86Q) revealed that 17 residues in the NH(2)-terminal of this protein are indispensable for its aggregate formation. Immunoprecipitation assays revealed that 14-3-3beta, gamma, eta, and zeta interact with Htt86Q transfected in N2a cells. Interestingly, the small interfering ribonucleic acid (siRNA) suppression of 14-3-3zeta exclusively abolished Htt86Q aggregate formation, whereas 14-3-3beta or eta siRNA suppression did not. This indicates that 14-3-3zeta participates in aggregate formation under nonnative conditions. Our data support a novel role for 14-3-3zeta in the aggregate formation of nonnative, aggregation-prone proteins.[Abstract] [Full Text] [Related] [New Search]