These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Broad T cell immunity to the LcrV virulence protein is induced by targeted delivery to DEC-205/CD205-positive mouse dendritic cells.
    Author: Do Y, Park CG, Kang YS, Park SH, Lynch RM, Lee H, Powell BS, Steinman RM.
    Journal: Eur J Immunol; 2008 Jan; 38(1):20-9. PubMed ID: 18081041.
    Abstract:
    There is a need for a more efficient vaccine against the bacterium Yersinia pestis, the agent of pneumonic plague. The F1-LcrV (F1-V) subunit vaccine in alhydrogel is known to induce humoral immunity. In this study, we utilized DC to investigate cellular immunity. We genetically engineered the LcrV virulence protein into the anti-DEC-205/CD205 mAb and thereby targeted the conjugated protein directly to mouse DEC-205(+) DC in situ. We observed antigen-specific CD4(+) T cell immunity measured by intracellular staining for IFN-gamma in three different mouse strains (C57BL/6, BALB/c, and C3H/HeJ), while we could not observe such T cell responses with F1-V vaccine in alhydrogel. Using a peptide library for LcrV protein, we identified two or more distinct CD4(+) T cell mimetopes in each MHC haplotype, consistent with the induction of broad immunity. When compared to nontargeted standard protein vaccine, DC targeting greatly increased the efficiency for inducing IFN-gamma-producing T cells. The targeted LcrV protein induced antibody responses to a similar extent as the F1-V subunit vaccine, but Th1-dependent IgG2a and IgG2c isotypes were observed only after anti-DEC-205:LcrV mAb immunization. This study sets the stage for the analysis of functional roles of IFN-gamma-producing T cells in Y. pestis infection.
    [Abstract] [Full Text] [Related] [New Search]